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Abstract

In this note we present a short and elementary proof of Hecke’s reci-
procity law for Hecke-Gauss sums of number fields.

In Chapter VIII of his book [Hec70], Hecke introduced and studied cer-
tain Gauss sums associated to arbitrary number fields. In particular, he
discovered a reciprocity law for these sums [Hec70, Satz 163, p. 240], which
he proved by analyzing the values of suitable theta functions in the cusps.
The purpose of the present note is to give a short and elementary proof of
Hecke’s reciprocity law. Our proof is based on Milgram’s formula [MH73,
p. 127]

1√
L]/L

∑
x∈L]/L

e
(
B(x, x)/2

)
= e(s/8), (1)

where (L,B) is an even integral lattice (i.e. L is a free Z-module of finite
rank and B a symmetric non-degenerate integer valued bilinear form on L
such that B(x, x) is even for all x in L), L] denotes the dual lattice {y ∈ L :
B(y, L) ⊆ Z}, s is the signature of L, and e(x) = exp(2πix) as usual.

Hecke’s Gauss sum was defined by the formula

C(ω) =
∑

µ mod a

e
(
tr(µ2ω)

)
where K is an arbitrary number field and ω a non-zero element of K. Here
N and tr denote the (absolute) norm and the trace of K and a denotes the
denominator of ωd, where d is the different of K. The sum is to be taken
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over a complete set representatives for the ring O of integers of K modulo a.
(Recall that the denominator of ωd is the unique integral ideal a such that
ωd = b/a with an integral ideal b relatively prime to a.) It is easily checked
that the terms of the sum C(ω) depend only on the residue class µ+ a.

We state Hecke’s reciprocity law in a renormalized form that is somewhat
clearer than the original formulation. We begin with the following lemma
whose short proof will be given at the end of the paper.

Lemma. For a non-zero ω of K, the number C(ω) is non-zero if and only
if the homomorphism

ã := a/(2, a)→ {±1}, µ 7→ e
(
tr(ωµ2)

)
(2)

is non-trivial. If this condition is satisfied, then e (tr(ωµ2)) depends only
on µ mod ã, and |C(ω)| =

√
N(ã) · [ã : a].

For ω satisfying the condition of the lemma, we set

B(ω) :=
1√
N(ã)

∑
µ mod ã

e
(
tr(µ2ω)

)
=

C(ω)

|C(ω)|
.

(In fact, B(ω) is an eighth root of unity, with an explicit formula as e(s/8),
where s is the signature of a certain lattice,1 but this fact does not seem to
lead to an alternative proof of the reciprocity and will not be used in the
sequel.) We also set

Sign(ω) =
∑
σ

signσ(ω),

where the sum runs over all real embeddings σ of K. With these notations,
Hecke’s reciprocity law can be restated as follows.

Theorem. For any non-zero ω in K such that the homomorphism (2) is
non-trivial, one has

B(ω) = e (Sign(ω)/8) B
(
−γ2/4ω

)
,

where γ denotes any number in K such that γd is integral and relatively
prime to the denominator of (4ωd)−1.

1Namely, it is easy to show that
(
O/ã, µ+ ã 7→ tr(ωµ2) +Z

)
is a non-degenerate finite

quadratic module and hence, by a theorem of Wall [Wal63, Theorem (6)], isomorphic to
the discriminant module of an even integral lattice. Then B(ω) = e(s/8) by Milgram’s
formula, where s is the signature of this lattice.
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Note that under the stated hypothesis C(γ2/4ω) is different from 0, and
hence that B(γ2/4ω) is defined. In fact, if tr(ωµ2) is integral for all µ in ã,
then on setting µ = γν/2ω we see that tr(γ2ν2/4ω) is integral for all ν in
2ωã/γ = 2b/(2, a)γd ⊆ 2b/(2, a). But the last ideal is the denominator of
γ2/4ω, as we will see in the course of the proof.

Proof. Using the obvious identity B(ω) = B(−ω) we can rewrite the reci-
procity formula more symmetrically as

B(ω)B
(
γ2/4ω

)
= e (Sign(ω)/8) . (3)

We assume first of all that the class number of K is 1, i.e. that every ideal
of the ring of integers O of K is principal. Let d = δO and write ωδ = β

α

with relatively prime integers α and β in K. We can then choose γ = 1/δ
and the left hand side of (3) becomes

1√
|N(2αβ)|

∑
µ mod α
ν mod 2β

e

(
tr
(
µ2 β

αδ
+ ν2

α

4βδ

))
,

provided α is odd (so that 4β is the exact denominator of γ2δ
4ω

= α
4β

and

ã = a = αO), which we assume for the moment. By writing

µ2 β

αδ
+ ν2

α

4βδ
≡ (2µβ + να)2

4αβδ
mod

1

δ
O

and on noticing that (µ, ν) 7→ 2µβ + να defines an isomorphism of O/αO ×
O/2βO with O/2αβO, we see that the last double sum becomes

1√
|N(2αβ)|

∑
τ mod 2αβ

e

(
tr
( τ 2

4αβδ

))
.

Consider the lattice L = (O,B), where B is the bilinear form on O defined
by B(x, y) = tr(2αβxy/δ). It is easily checked that B is non-degenerate and
takes on even integral values. Moreover, for the dual O] of O with respect
to B we find

O] = {y ∈ Q⊗Z O : B(y,O) ⊆ Z} = (2αβ)−1O.

Using these notations the last sum may be rewritten as

1√
|O]/O|

∑
x∈O]/O

e (B(x, x)/2) .
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But according to the formula (1) this sum equals e(s/8), where s denotes the
signature of the quadratic form B(x, x) on R⊗Z O. It is easily checked that
s = Sign(ω) which then proves (3).

To prove the general case we rewrite the left hand side of (3) as

1√
N(ã b̃1)

∑
µ mod ã

ν mod b̃1

e

(
tr
(
ωµ2 +

γ2ν2

4ω

))
, (4)

where we write as before ωd = ba−1 with relatively prime integral ideals a
and b, and where b1 denotes the denominator of γ2d/4ω. Recall that, for any
ideal c, we use c̃ = c/(2, c). Since, by definition, γd is integral and relatively
prime to the denominator of (4ωd)−1, we find that the denominator b1 of
γ2d(4ω)−1 = (γd)2(4ωd)−1 equals the denominator of (4ωd)−1 = a(4b)−1.
From this and the fact that a and b are relatively prime, we obtain

b1 =
4b

(4, a)
, b̃1 =

2b

(2, a)
.

(The second identity follows from the first one on writing b̃1 = b1
(2,b1)

=
4b/(4,a)

(2,4b/(4,a))
= 2b

(4,a,2b)
= 2b

(2,a)
.) We write

ωµ2 +
γ2ν2

4ω
≡ (2ωµ+ γν)2

4ω
mod d−1.

Now the map (µ, ν) 7→ 2ωµ+ γν, O ×O → 2ωO + γO induces a map

φ : O/ã×O/b̃1 →
2ωO + γO

2ωã + γb̃1
.

We claim that φ is a isomorphism. Since φ is obviously surjective it suffices
to prove that

N(ãb̃1) =
N(2ωã + γb̃1)

N(2ωO + γO)
.

But this follows from:

2ωO + γO =
2b

ad
+ γO =

2b + γad

ad
=

2b/(2, a) + γãd

ãd
=

1

ãd
,

2ωã + γb̃1 =
2b

(2, a)d
+

2γb

(2, a)
=

b̃1
d

(O + γd) =
b̃1
d
.

For the last identity of the first line we use 2b/(2, a) + γdã = O since ã and

γd are relatively prime to 2b/(2, a) = b̃1.
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Using this isomorphism φ we can rewrite (4) as

1√
|M |

∑
x∈M

e

(
tr
( x2

4ω

))
,

where M = (ãd)−1/b̃1d
−1. But M = L]/L, where L denotes the even integral

lattice
(
b̃1d
−1, 2 tr

(
xy
4ω

))
. Hence, we can again apply formula (1) to deduce

that the last sum equals e(s/8), where s is the signature of the lattice L.
Finally, to compute the signature s we note that a Gram matrix for L

is given by ∆tD∆, where D is the diagonal matrix with σi(1/2ω) on the
diagonal and σi running through the embeddings of K into C, and where
∆ = (σi(αj))i,j with {αj} denoting a Z-basis of b̃1d

−1. But the signature of

∆tD∆ equals Sign(1/4ω) = Sign(ω), as is obvious if K is totally real and an
easy exercise in the general case. This proves the theorem.

Proof of Lemma. Using C(ω) = C(−ω) we find that |C(ω)|2 equals∑
µ,ν mod a

e
(
tr
(
ω(µ− ν)(µ+ ν)

))
=
∑

µ mod a

e
(
tr(ωµ2)

) ∑
ν mod a

e (2 tr(ωµν)) ,

where the right hand side is obtained by substituting µ + ν 7→ µ in the
left hand side. The inner sum on the right equals N(a) if 2µωd is integral,
i.e. if µ ∈ ã = a/(2, a), and is 0 otherwise. We have therefore

|C(ω)|2 = N(a)
∑
µ∈ã/a

e
(
tr(ωµ2)

)
.

It is easily checked that the application µ 7→ e (tr(ωµ2)) defines a group
homomorphism ã/a 7→ {±1}. Hence the last sum is different from 0 if and
only if tr(ωµ2) ∈ Z for all µ ∈ ã, in which case |C(ω)|2 = N(a) · [ã : a] =

N(ã) · N
(
(2, a)

)2
. The remaining statement of the lemma is obvious.
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