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Abstract

In this note we present a short and elementary proof of Hecke’s reci-
procity law for Hecke-Gauss sums of number fields.

In Chapter VIII of his book [Hec70], Hecke introduced and studied cer-
tain Gauss sums associated to arbitrary number fields. In particular, he
discovered a reciprocity law for these sums [Hec70, Satz 163, p. 240], which
he proved by analyzing the values of suitable theta functions in the cusps.
The purpose of the present note is to give a short and elementary proof of

Hecke’s reciprocity law. Our proof is based on Milgram’s formula [MHT73,

p. 127] X
Wi > e(B(x,x)/2) = e(s/8), (1)

x€LY/L

where (L, B) is an even integral lattice (i.e. L is a free Z-module of finite

rank and B a symmetric non-degenerate integer valued bilinear form on L

such that B(z,z) is even for all z in L), L* denotes the dual lattice {y € L :

B(y,L) C Z}, s is the signature of L, and e(x) = exp(2miz) as usual.
Hecke’s Gauss sum was defined by the formula

C(w) = Z e (tr(p’w))

pmod a

where K is an arbitrary number field and w a non-zero element of K. Here
N and tr denote the (absolute) norm and the trace of K and a denotes the
denominator of w0, where 0 is the different of K. The sum is to be taken
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over a complete set representatives for the ring O of integers of K modulo a.
(Recall that the denominator of wd is the unique integral ideal a such that
w0 = b/a with an integral ideal b relatively prime to a.) It is easily checked
that the terms of the sum C(w) depend only on the residue class p + a.

We state Hecke’s reciprocity law in a renormalized form that is somewhat
clearer than the original formulation. We begin with the following lemma
whose short proof will be given at the end of the paper.

Lemma. For a non-zero w of K, the number C(w) is non-zero if and only
if the homomorphism

a:=a/(2,a) > {£1}, p—e(tr(wy?)) (2)

is non-trivial. If this condition is satisfied, then e (tr(wu?)) depends only

on pmod a, and |C(w)| = /N(a) - [a: a].

For w satisfying the condition of the lemma, we set

B(w) = — Z e (tr(p’w)) = .

N@ C(w)]
(In fact, B(w) is an eighth root of unity, with an explicit formula as e(s/8),
where s is the signature of a certain lattice,! but this fact does not seem to
lead to an alternative proof of the reciprocity and will not be used in the

sequel.) We also set

Sign(w) = Z sign o(w),

where the sum runs over all real embeddings o of K. With these notations,
Hecke’s reciprocity law can be restated as follows.

Theorem. For any non-zero w in K such that the homomorphism (2) is
non-trivial, one has

B(w) = e (Sign(w)/8) B (—+*/4w) ,

where v denotes any number in K such that y0 is integral and relatively
prime to the denominator of (4wd)~'.

INamely, it is easy to show that (O/H, w4 a s tr(wp?) + Z) is a non-degenerate finite
quadratic module and hence, by a theorem of Wall [Wal63, Theorem (6)], isomorphic to
the discriminant module of an even integral lattice. Then B(w) = e(s/8) by Milgram’s
formula, where s is the signature of this lattice.



Note that under the stated hypothesis C(7?/4w) is different from 0, and
hence that B(v?/4w) is defined. In fact, if tr(wp?) is integral for all y in a,
then on setting p = /2w we see that tr(y?v?/4w) is integral for all v in
2wa/y = 2b/(2,a)y0 C 2b/(2,a). But the last ideal is the denominator of
72 /4w, as we will see in the course of the proof.

Proof. Using the obvious identity B(w) = B(—w) we can rewrite the reci-
procity formula more symmetrically as

B(w)B (7v*/4w) = e (Sign(w)/8) . (3)

We assume first of all that the class number of K is 1, i.e. that every ideal
of the ring of integers O of K is principal. Let 9 = 6O and write wé = ¢
with relatively prime integers a and 5 in K. We can then choose v = 1/0
and the left hand side of (3) becomes

T ()

v mod 23
provided « is odd (so that 40 is the exact denominator of 1—23 = 45 and
a = a= a0), which we assume for the moment. By writing
5 O , a  (2uB+va)? 1
— = d -0
"o TV a8s Y

and on noticing that (i, v) — 2uf + va defines an isomorphism of O/aO x
0/2p0 with O/2ap0, we see that the last double sum becomes

VIN 2045 ngmﬁ ( 4aﬁ5))

Consider the lattice L = (O, B), where B is the bilinear form on O defined
by B(z,y) = tr(2apxy/d). 1t is easily checked that B is non-degenerate and
takes on even integral values. Moreover, for the dual Of of O with respect
to B we find

O'={yeQ®,0:B(y,0) CZ} = (2a8)"

Using these notations the last sum may be rewritten as

B(z,x)/2).

oo 2 ©
|O /O z€0t/O
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But according to the formula (1) this sum equals e(s/8), where s denotes the
signature of the quadratic form B(z,z) on R ®z O. It is easily checked that
s = Sign(w) which then proves (3).

To prove the general case we rewrite the left hand side of (3) as

Y e+ D), (@)

N(H bl) u mod @

v mod El

where we write as before wd = ba~! with relatively prime integral ideals a

and b, and where b; denotes the denominator of ¥20/4w. Recall that, for any
ideal ¢, we use ¢ = ¢/(2, ¢). Since, by definition, 70 is integral and relatively
prime to the denominator of (4wd)~!, we find that the denominator b; of
Y20 (4w)™t = (70)*(4wd)™! equals the denominator of (4wd)™! = a(4b)~!.
From this and the fact that a and b are relatively prime, we obtain

4b ~ 2b
bl = ) b1 - .
(47 Cl) (2, Cl)
(The second identity follows from the first one on writing b, = (2";1) =
4b/(4@) _ 26 _ 20 .
(2,4h/(4c,la)) = e = o) We write

2,2 9 2
wp? + Y (Qup +v) mod 01
4w 4w

Now the map (p, v) — 2wp + v, O x O — 2wO + ~vO induces a map

. ~ 2w0 O
¢ZO/QXO/b1—>(JJN——i_P);.
2wa + vby

We claim that ¢ is a isomorphism. Since ¢ is obviously surjective it suffices
to prove that

~ . N(2wd + b))

N(ab;) = —————=.

(801) = F200 110)

But this follows from:
2b 2b +~vyad  26/(2,a)+va0 1
Wt ad 7 ad B ao B a0’

- ~ 2b 276 by b,
et =G T 2 3 (OF70) =3

For the last identity of the first line we use 2b/(2,a) + v0a = O since a and
70 are relatively prime to 2b/(2,a) = b;.
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Using this isomorphism ¢ we can rewrite (4) as

1 2
Ly (tr (i)) ,
|M’ zeM 4w
where M = (a0)™/b107L. But M = L*!/L, where L denotes the even integral
lattice (Elb_l, 2 tr (%)) Hence, we can again apply formula (1) to deduce
that the last sum equals e(s/8), where s is the signature of the lattice L.
Finally, to compute the signature s we note that a Gram matrix for L
is given by A'DA, where D is the diagonal matrix with o;(1/2w) on the
diagonal and o; running through the embeddings of K into C, and where
A = (04(y)), ; with {a;} denoting a Z-basis of b,07!. But the signature of
A'DA equals Sign(1/4w) = Sign(w), as is obvious if K is totally real and an
easy exercise in the general case. This proves the theorem. O]

Proof of Lemma. Using C(w) = C(—w) we find that |C(w)|* equals
Z e(tr(wlp—v)(p+v))) = Z e (tr(wp?)) Z e (2tr(wur)),

w,v mod a pmod a v mod a

where the right hand side is obtained by substituting p + v — u in the
left hand side. The inner sum on the right equals N(a) if 2uwd is integral,
ie. if p € a=a/(2,a), and is 0 otherwise. We have therefore

IC(w)]> =N(a) > e (tr(wp?)).
puEa/a

It is easily checked that the application pu — e (tr(wp?)) defines a group
homomorphism a/a — {£1}. Hence the last sum is different from 0 if and
only if tr(wpu?) € Z for all u € @, in which case |C(w)|* = N(a)-[a : a] =
N(@) - N ((2, a))z. The remaining statement of the lemma is obvious. O
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